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Modelling of cyclic fatigue stress for life 
prediction of structural ceramics 
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The stress models of a cyclic fatigue test for structural ceramics were developed using the 
theory of fracture mechanics to predict the accurate life cycles of the specimens. Four kinds 
of models were tried to obtain the representative stresses corresponding to the cyclic 
stresses applied to the alumina specimens. Crack-growth exponents of 21.81, 22.15, 24.57 
and 24.43 were obtained from the arithmetic mean stress model, the integrated stress 
model, the maximum stress model, and the equivalent staticstress model, respectively. It is 
considered that the equivalent static stress model is the most reasonable and gives the most 
accurate value of the crack-growth exponent from the view point of the theoretical 
background for developing the model. 

1. Introduction 
The development of a technique to evaluate the relia- 
bility of sintered ceramic bodies is as important as that 
of powder preparation, fabrication of ceramic parts 
and other ceramic processing techniques for the ap- 
plications of ceramics to structural and mechanical 
uses. It is well known that fracture of ceramics is 
caused by the growth of microcracks existing on the 
surfaces or inside the ceramic parts, even under 
a working load much less than the fracture stress. The 
fatigue life of ceramics is controlled by the subcritical 
crack growth [1] and the crack-growth rate, V, is 
expressed as 

V = Akf  (1) 

where KI is the stress intensity factor, and A and n are 
material constants. Because the crack-growth expo- 
nent, n, of most ceramics has a value higher than 20, 
ceramics generally follow a catastrophic failure by 
rapid crack growth [2-5]  as can be expected from 
Equation 1. The fatigue lifetime of ceramics can be 
expressed by Equation 2, derived on the basis of 
Griffith's fracture criterion [6] 

o~/ ~ (2) 

where tl is the time to failure of the ceramics under 
an applied stress cri, and t2 is the time to failure under 
an applied stress c~2. 

The applied stress is constant in static fatigue; how- 
ever, it varies with time in cyclic fatigue. Therefore, it is 
desirable to derive an appropriate representative 
"static" stress corresponding to the cyclic stress ap- 
plied to the alumina ceramics, which should exactly 
reflect the growth of the microcrack existing in 
alumina ceramics under cyclic stress. 

In this study the fatigue life of alumina ceramics was 
measured under cyclic stress loading and the stresses 
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in Equation 2 were studied to predict the lifetime of 
the alumina ceramics under cyclic stressing. 

2. Theoretical background 
The fatigue lifetime of ceramics can be estimated from 
the correlation between the two equations related to 
slow crack growth and stress intensity factor, as 
shown in Equation 3 

d a  
V - 

d t -  

A K f  = A(Y~a~/2)" (3) 

where ~ is the applied stress, a the crack size, t the 
time, A and n the material constants, Kx the stress 
intensity factor, and Y the shape factor. 

Integration of Equation 3 to the final failure time 
gives 

~ f  t ~t 
a- . /2da  = A y  ~ ci"dt 

,d a i 0 

(4) 

2 m n  
a~2-")/2 -- a(i2-")/2 - T AY"~"t (5) 

Because af >> ai and n >> 1, Equation 6 can be obtained 

(n - 2) A Y" al"- 2)/2 = c~"t (6) 

The left-hand side of Equation 6 can be represented by 
a constant c, and so Equations 7 and 8 can be derived 

2 
c = (n - 2) A Y" a{"- 2)/2 (7) 

c = ~]tl 

(8) 
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Equation 2 thus has been derived. Plotting log cy 
versus log t using Equation 2 gives the slope n, and 
hence the time to failure can be predicted without 
actual loading. 

To apply Equation 2 to the prediction of fatigue life, 
it is necessary to express a representative stress corres- 
ponding to the cyclic stress applied to the specimen. 
Four  possible models for the representative stress will 
be discuss6d. 

2.1. Arithmetic mean stress model 
The arithmetic mean value of the maximum and min- 
imum stresses in a single cycle of the repeated cyclic 
stressing is defined as a corresponding representative 
stress, as shown in Equation 9 

3. Exper iment s  
The rectangular-type alumina specimens of 3 mm x 
4 mm x 40 mm were prepared by cutting, grinding and 
polishing after they were sintered at 1670 ~ for 2 h. 
The properties of the alumina specimens are given in 
Table I. The cyclic fatigue test machine for this invest- 
igation was constructed as schematically shown in 
Fig. 1. 

The cyclic fatigue test was conducted by stressing 
the alumina specimen on a three-point bend tester 
with a frequency of 0.5 Hz. The stresses applied to 
the specimens were in the range of 250-350 MPa, 
calculated using 

3 P I  

c~ - 2 b d 2  (14) 

(~max "~- (Ymin 
C~ . . . .  - -  (9) 

2 

where cy . . . .  is the arithmetic mean stress, (Ymax the 
maximum stress, and (Ymin the minimum stress. 

where P is the load, 1 the span, b the width, and d the 
thickness of the specimen. 

A computer program was developed to calculate the 
equivalent static stress and the crack-growth exponent 
in this investigation and the flowchart of the program 
is given in Fig. 2. 

2.2. Integrated stress 
Integration of cyclic stress during stressing time can be 
done through integrating the area represented by the 
cyclic stress curve along the time elapsing until failure 
occurs, as shown in Equation 10 

O-in t = t -  1 ~o~(t)dt (10 )  

Equation 10 defines the integrated stress which is also 
one of the representative stresses, where ~int is the 
integrated stress, cy(t) the applied stress, and t the time 
to failure. 

2.3. Max imum stress model 
The maximum stress in a cycle is defined as a represen- 
tative stress, which has already been used to predict 
the fatigue lifetime [2-5, 9]. 

2.4. Equivalent static stress model 
Equations 11 and 12 can be derived by letting the 
cyclic stress be equal to the equivalent static stress, %s, 
as a static stress, as given in Equation 6 

= I t -  t {'t 31/.  
(Yes Jo [o(t)]"dtJ (11) 

~o[C~(t)]"dt = ( ~ t  (12) 

Applying Equation 12 to Equations 6 and 7 gives 
Equation 13 

. ( 13 )  CYest = C 

All the above-mentioned representative stresses, 
c~ . . . . .  %,t, Crmax and c~es can be applied to predict the 
fatigue life of alumina ceramics under cyclic stressing. 

TABLE I Properties of the alumina specimen 

P 
(J 

KIC 
Grain size 
Hv 

3900 kgm -3 (97.9%) 
360 420 MPa 
3.6-4.5 MPam 1/2 
2 10 pm (mean 5 gm) 
11.5-13 GPa 

1 

Figure 1 Schematic diagram of the cyclic fatigue machine. 1, Speci- 
men; 2, load cell; 3, spring; 4, weight; 5, cam; 6, motor. 
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Figure 2 Flowchart of the calculation program for n. 

4. Results and discussion 
The variation of the load applied to the specimens 
with time is shown in Fig. 3. The wave pattern shows 
a kind of the sine curve with a frequency of 0.5 Hz. 
Cyclic fatigue according to the pattern of the sine 
curve was applied to the specimens. The four kinds of 
representative stress models developed in this study 
were demonstrated graphically and their accuracies 
were compared. 

4.1. Ar i thmet ic mean stress model and 
integrated stress model 

We assume that two wave functions, A and B, have the 
same wavelength, r~, and frequency, 0.5 Hz, but differ- 
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Figure 3 Typical load-time profile for cyclic fatigue loading. 
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Figure 4 Schematic drawing of the loading wave forms for 
the cyclic fatigue test. A, c~(t)= 100sin(~t)+ 200; B, ~(t)= 
50sin(~t) + 200. 

ent amplitudes, 100 and 50, for A and B, respectively, 
as shown in Fig. 4. In this case the arithmetic mean 
stress, cy . . . . .  and the integrated stress, CYlnt are the 
same, 200 MPa,  for both functions A and B, as can be 
seen in Fig. 4. However, it is expected that they will 
have different fatigue lifetimes because the two wave 
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functions have different maximum and minimum 
stresses. This means that the arithmetic mean stress 
model and the integrated stress model do not correctly 
reflect the representative stress corresponding to the 
applied cyclic stress. It  is also considered that the 
arithmetic mean stress and integrated stress cannot be 
reasonably applied for lifetime prediction. 
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Figure 5 Schematic 
the cyclic fatigue 
100sin(~t) q- 200. 
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drawing of the loading wave forms for 
test. A, ~(t) = 50sin(~t) + 250; B, cy(t) = 

4 .2 .  M a x i m u m  s t r e s s  m o d e l  a n d  e q u i v a l e n t  

s t a t i c  s t r e s s  m o d e l  
The maximum stress model gives the maximum stress, 
C%ax = 300 MPa,  in Fig. 4, and the equivalent static 
stress model gives the equivalent static stress, %s = 
276.79 MPa,  from Equation 11 for the wave function 
A. In the same way, the maximum stress, cy . . . .  and the 
equivalent static stress, eyes, can be determined as 250 
and 233.19 MPa,  respectively, for the wave function B. 
Both the maximum stress model and the equivalent 
static stress model are considered to be quite reason- 
able. However, the maximum stress model does not 
reflect the minimum stress when the wave function 
shows different minimum stress, as shown in Fig. 5. 
The maximum stress model gives the same maximum 
stress, 300 MPa,  for both functions A and B, as shown 
in Fig. 5, however, the equivalent static stress model 
reflects the different minimum values by showing 
280.95 M P a  for function A and 276.79 M P a  for func- 
tion B, as shown in Fig. 5. In fact, the maximum stress 
model has already been accepted and generally used 
as the representative stress to predict the fatigue life- 
time of ceramics [2-5, 9] via approximation by ne- 
glecting tedious integration. The equivalent static 
stress model has been developed theoretically in this 
study on the basis of fracture mechanics without ne- 
glecting the integration. Therefore, it can be said that 
the equivalent static stress model is more reasonable 
and reliable than the maximum stress model to predict 
the fatigue lifetime of ceramics. 

The representative stresses of the four models were 
calculated and plotted against time (or number  of 
cycles) in Figs 6-9. The data of the arithmetic mean 
stress are plotted against time in Fig. 6, those of the 
integrated stress against time are given in Fig. 7. Fig. 8 
shows the maximum stress plotted against time, while 
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Figure 6 Double logarithmic plot of the arithmetic mean stress 
against number of cycles. 
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Figure 7 Double logarithmic plot of the integrated stress against 
number of cycles. 
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Figure 8 Double logarithmic plot of the maximum stress against 
number of cycles. 

the variation of equivalent static stress with time is 
shown in Fig. 9. The crack-growth exponent, n, for 
each model can be obtained fi'om the slopes of log G 
versus log t plots. The crack-growth exponents, n, for 
the arithmetic mean stress model, the integrated stress 
model, the maximum stress model, and the equivalent 
static stress model are 21.81, 22.15, 24.57, and 24.43, 
respectively, obtained by the least-squares method. 
The maximum stress model shows a value very close 
to that of the equivalent static stress model. 

5. Conclusion 
Four kinds of model were suggested to obtain the 
most accurate representative static stress correspond- 
ing to the cyclic stress applied to the alumina speci- 
mens to predict the lifetime of alumina ceramics under 
cyclic fatigue. The arithmetic mean stress model 
gives a crack-growth exponent of 21.81, the integrated 
stress model gives 22.15, the maximum stress model 
gives 24.57, and the equivalent static stress model 
gives 24.43. It is considered that the equivalent static 
stress model is the most reasonable one, and gives the 
most accurate and reasonable crack-growth exponent 
value. 
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Figure 9 Double logarithmic plot of the equivalent static stress 
against number of cycles. 
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